The realization space is
  [1   1   0                    x2 - 1   0   1   1                                      0                    x2 - 1         1    1]
  [0   1   1   x1^2 + x1*x2 - 3*x1 + 1   0   0   1                                     x2   x1^2 + x1*x2 - 3*x1 + 1        x1   x1]
  [0   0   0                         0   1   1   1   -x1^2 - x1*x2 + 3*x1 - x2^2 + x2 - 1                 x2^2 - x2   -x1 + 1   x2]
in the multivariate polynomial ring in 2 variables over ZZ
within the vanishing set of the ideal
Ideal with 2 generators
avoiding the zero loci of the polynomials
RingElem[x1 + x2 - 1, x1, x1 - 1, x2, x2 - 1, x1^2 + x1*x2 - 3*x1 + x2^2 - x2 + 1, x1^3 + x1^2*x2 - 3*x1^2 + x1*x2^2 - x1*x2 + x1 + x2^2, x1^3 + x1^2*x2 - 4*x1^2 + x1*x2^2 - 2*x1*x2 + 4*x1 + x2 - 1, x1^4 + x1^3*x2 - 5*x1^3 + x1^2*x2^2 - 3*x1^2*x2 + 8*x1^2 - 2*x1*x2^2 + 3*x1*x2 - 5*x1 - x2^3 + 2*x2^2 - x2 + 1, x1^3 + x1^2*x2 - 3*x1^2 + x1*x2^2 - x1*x2 + x1 + x2^2 - x2, x1 - x2, x1^2 + x1*x2 - 2*x1 + 1, x1^2 + x1*x2 - 3*x1 + 1, x1 + x2 - 2, x1^2 + x1*x2 - 3*x1 + x2^2 - 2*x2 + 2, x1^2 + x1*x2 - 2*x1 + x2^2 - 2*x2 + 1, x1^4 + x1^3*x2 - 5*x1^3 + x1^2*x2^2 - 3*x1^2*x2 + 8*x1^2 - x1*x2^2 + 2*x1*x2 - 5*x1 + x2^3 - x2^2 + 1, x1^3 + x1^2*x2 - 3*x1^2 + x1*x2^2 - 2*x1*x2 + x1 + x2, x1^2 + x1*x2 - 3*x1 + x2^2 - 2*x2 + 1, x1^3 + x1^2*x2 - 4*x1^2 + x1*x2^2 - 3*x1*x2 + 4*x1 - x2^2 + x2 - 1, 2*x1 - 1, x1^4 + 2*x1^3*x2 - 6*x1^3 + 2*x1^2*x2^2 - 7*x1^2*x2 + 11*x1^2 + x1*x2^3 - 4*x1*x2^2 + 5*x1*x2 - 6*x1 + x2^3 - x2 + 1, x1^4 + 2*x1^3*x2 - 6*x1^3 + 2*x1^2*x2^2 - 8*x1^2*x2 + 12*x1^2 + x1*x2^3 - 5*x1*x2^2 + 9*x1*x2 - 9*x1 + 2*x2^2 - 3*x2 + 2, x1^4 + 2*x1^3*x2 - 6*x1^3 + 2*x1^2*x2^2 - 7*x1^2*x2 + 11*x1^2 + x1*x2^3 - 4*x1*x2^2 + 5*x1*x2 - 6*x1 + x2^3 - x2^2 + 1, x1^2 + x1*x2 - 3*x1 - x2^2 + x2 + 1, x1^2 + x1*x2 - 3*x1 + x2^2 + 1, x1^4 + 2*x1^3*x2 - 6*x1^3 + 2*x1^2*x2^2 - 8*x1^2*x2 + 12*x1^2 + x1*x2^3 - 5*x1*x2^2 + 9*x1*x2 - 9*x1 - x2^3 + 2*x2^2 - 2*x2 + 2, x1^4 + 2*x1^3*x2 - 6*x1^3 + 2*x1^2*x2^2 - 7*x1^2*x2 + 11*x1^2 + x1*x2^3 - 4*x1*x2^2 + 5*x1*x2 - 6*x1 + 1]